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Genetic Programming recursively applied to itself, to obtain Meta-GP and Meta-Meta-GP etc: 
J. Schmidhuber (1987). Evolutionary principles in self-referential learning. On learning how to 
learn: The meta-meta-…hook. Diploma thesis, TU Munich. 1st concrete design of recursively 
self-improving AI (RSI), trying to make a first step towards superintelligence. Reinforcement-

learn to improve learning algorithm itself, and also the meta-learning algorithm, etc… 
 
 

http://people.idsia.ch/~juergen/diploma.html 

http://people.idsia.ch/~juergen/metalearner.html 



“True” Learning to 
Learn (L2L) is not just 

transfer learning! 
Even a simple  

feedforward NN can 
transfer-learn to learn 

new images faster 
through pre-training 
on other image sets 

True L2L is not just 
about learning to 
adjust a few hyper-
parameters such as 
mutation rates in 
evolution strategies 
(e.g., Rechenberg & 
Schwefel, 1960s) 



Radical L2L is about 
encoding the initial 

learning algorithm  in 
a universal language 

(e.g., on an RNN), 
with primitives that 
allow to modify the 

code itself in arbitrary 
computable fashion 

Then surround this 
self-referential, self-
modifying code by a 
recursive framework 
that ensures that 
only “useful” self-
modifications are 
executed or survive 
(RSI) 



http://www.idsia.ch/~juergen/rnn.html 

Looks a bit like supervised L2L but is not yet: Separation of Storage and 
Control for NNs: End-to-End Differentiable Fast Weights (Schmidhuber, 
1992) extending v.d. Malsburg’s non-differentiable dynamic links (1981) 



With Hochreiter (1997), Gers (2000), Graves, Fernandez, Gomez, Bayer… 

1997-2009. Since 2015 on your phone! Google, Microsoft, IBM, Apple, all use LSTM now 

http://www.idsia.ch/~juergen/rnn.html 



Ex-PhD students (TUM & IDSIA) 
Sepp Hochreiter (PhD 1999), Felix 

Gers (PhD 2001, forget gates for 
recurrent units), Alex Graves (e.g., 

CTC, PhD 2008), Daan Wierstra 
(PhD 2010), Justin Bayer (2009, 

evolving LSTM-like architectures)  

        But few would say that LSTM 
by itself is a metalerner! 

Today’s LSTM has fast weights in 
the forget gates! LSTM shaped by:  

LSTM cell 



2015: Dramatic improvement of 
Google's speech recognition 
through LSTM & CTC (2006), now 
on 2 billion Android phones. Similar 
for Microsoft. 2016: LSTM on 
almost 1 billion Apple iPhones, e.g., 
Siri. 2016: Google's greatly 
improved Google Translate uses 
LSTM; also Amazon’s Echo. 2017: 
Facebook uses LSTM for over 4 
billion translations each day 

Otherwise this would also be 
metalearning: Almost 30% of the 
awesome computational power for 
inference in all those Google 
datacenters is used for LSTM 
(Jouppi et al, 2017); 5% for CNNs.  

LSTM / CTC 
also used by 



1992-1993: 
Gradient-based 
meta-RNNs that can 
learn to run their own 
weight change 
algorithm, e.g.: J. 
Schmidhuber. A self-
referential weight 
matrix. ICANN 1993. 
Based on TR at U 
Colorado, 1992. 

An RNN, but no LSTM yet. In 2001, however, Sepp Hochreiter taught a meta-LSTM 
to learn a learning algorithm for quadratic functions that was faster than backprop  



1993: More elegant 
Hebb-inspired 

addressing to go 
from (#hidden) to 

(#hidden)2 temporal 
variables: gradient-
based RNN learns 
to control internal 

end-to-end 
differentiable 
spotlights of 

attention for fast 
differentiable 

memory rewrites – 
again fast weights  

Schmidhuber, 
ICANN 1993: 
Reducing the ratio 
between learning 
complexity and 
number of time-
varying variables in 
fully recurrent nets. 

Similar NIPS 2016 
paper by Ba et al. 
See I. Schlag at 
NIPS Metalearning 
Symposium 2017! 
 



slow network

fast network

New fast 
weight 
addressing 
scheme: 
Imanol 
Schlag @ 
NIPS Meta-
learning 
Workshop 
2017 
 



2005: 
Reinforcement-

Learning or 
Evolving RNNs 

with Fast Weights 

Robot learns to 
balance 1 or 2 poles 
through 3D joint 

http://www.idsia.ch/~juergen/evolution.html 

Gomez & Schmidhuber: 
Co-evolving recurrent 
neurons learn deep 
memory POMDPs. 
GECCO 2005 



http://www.idsia.ch/~juergen/firstdeeplearner.html 

Useful concept of 1991-92: 
compress or collapse or 
distill or clone one NN into 
another (now widely used)  

Neural history compressor: unsupervised pre-
training of  RNN stack or hierarchy; chunker 

RNN gets compressed into automatizer RNN 
which is also re-trained on previous skills 



J. Schmidhuber. On 
learning how to learn 
learning strategies. 
TR FKI-198-94, 1994. 

Success-story algorithm (SSA) for 
self-modifying code (since 1994) 

R(t)/t <                  
[R(t)-R(v1)] / (t-v1) <              
[R(t)-R(v2)] / (t-v2) <… 

R(t): Reward until time t. Stack of 
past check points v1v2v3 … with 
self-mods in between. SSA 
undoes selfmods after vi that are 
not followed by long-term reward 
acceleration up until t (now): 















1997: Lifelong 
meta-RL with self-
modifying policies 
and success-story 
algorithm: 2 
agents, 2 doors, 2 
keys. 1st 
southeast wins 5, 
the other 3. 
Through recursive 
self-modifications 
only: from 
300,000 steps per 
trial down to 
5,000. 



Universal problem solver Gödel machine 
uses self reference trick in a new way 

 

Kurt Gödel, father of theoretical computer 
science and of AI theory, exhibited the 
limits of math and computation and AI 

(1931) by creating a formula that speaks 
about itself, claiming to be unprovable by a 

computational theorem prover: either 
formula is true but unprovable, or math is 

flawed in an algorithmic sense 



Gödel Machine (2003): 
agent-controlling program 
that speaks about itself, 
ready to rewrite itself in 
arbitrary fashion once it 
has found a proof that the 
rewrite is useful, given a 
user-defined utility function 

Theoretically optimal  
self-improver! 

goedelmachine.com 



Initialize Gödel Machine 
by Marcus Hutter‘s 

asymptotically fastest 
method for all well-

defined problems 

Given f:X→Y and x∈X, search proofs to find 
program q that provably computes f(z) for all 

z∈X within time bound tq(z); spend most time 
on f(x)-computing q with best current bound 

IDSIA 
2002 

on my 
SNF 

grant 

n3+101000=n3+O(1)    

As fast as fastest 
f-computer, save 
for factor 1+ε and 
f-specific const. 
independent of x!  



PowerPlay not only solves but also continually 
invents problems at the borderline between what's 

known and unknown - training an increasingly 
general problem solver by continually searching for 

the simplest still unsolvable problem 



https://www.youtube.com/watch?v=OTqdXbTEZpE 
Continual curiosity-driven skill 
acquisition from high-dimensional 
video inputs for humanoid robots. 
Kompella, Stollenga, Luciw, 
Schmidhuber. Artificial Intelligence, 
2015 



Mit M Stollenga, K Frank, J Leitner, L Pape, A Foerster, J Koutnik 



now talking to investors 

neural networks-based 
artificial intelligence 



http://people.idsia.ch/~juergen/erc2017.html www.nnaisense.com 



1.  Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to 
learn: The meta-meta-... hook. Diploma thesis, TUM, 1987. (First concrete RSI.) 

2.  Schmidhuber. A self-referential weight matrix. ICANN 1993. Based on TR CU-
CS-627-92, Univ. Colorado, 1992. (Supervised gradient-based RSI.) 

3.  Schmidhuber. On learning how to learn learning strategies. TR FKI-198-94, 1994. (RL) 
4.  Schmidhuber and J.  Zhao and M.  Wiering. Simple principles of metalearning. TR 

IDSIA-69-96, 1996. (Meta-RL and RSI based on 3.) 
5.  Schmidhuber, J.  Zhao, N. Schraudolph. Reinforcement  learning with self-modifying 

policies. In Learning to learn, Kluwer, pages 293-309, 1997. (Meta-RL based on 3.) 
6.  Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story 

algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning 
28:105-130, 1997. (Partially based on 3.) 

7.  Schmidhuber. Gödel machines: Fully Self-Referential Optimal Universal Self-Improvers. 
In Artificial General Intelligence, p. 119-226, 2006. (Based on TR of 2003.) 

8.  T. Schaul and Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.  
9.  More under http://people.idsia.ch/~juergen/metalearner.html 
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 1990s: Predictability Minimization: 2 unsupervised nets 
fight in minimax game to model a given data distribution  

Encoder maximizes 
objective minimized 
by predictor. Saddle 
point = ideal factorial 
code. Next: similar  
for Reinforcement 
Learning! 



 1997-2002: What’s interesting? Exploring the predictable 
http://people.idsia.ch/~juergen/interest.html 

 
Two reinforcement learning adversaries called "left brain" and "right brain”  
are intrinsically motivated to outwit or surprise the other by proposing an 
experiment such that the other agrees on the experimental protocol but 
disagrees on the predicted outcome, which is an internal abstraction of 

complex spatio-temporal events generated through the execution the self-
invented experiment. After execution, the surprised loser pays a reward to the 
winner in a zero sum game. This motivates the two brain system to focus on 
the “interesting'' things, losing interest in boring aspects of the world that are 
consistently predictable by both brains, as well as seemingly random aspects 

of the world that are currently still hard to predict by any brain. This type of 
artificial curiosity can help to speed up the intake of external reward. 



Super-deep program learner: 
Optimal Ordered Problem Solver 
OOPS (Schmidhuber, MLJ, 2004, 
extending Levin’s universal 
search, 1973)  
 
Time-optimal incremental search 
and algorithmic transfer learning 
in program space 
 
Branches of search tree are 
program prefixes 
 
Node-oriented backtracking  
restores partially solved task sets 
& modified memory components 
on error or when ∑ t > PT 



61 primitive instructions operating 
on stack-like and other internal 
data structures. For example:  
 
push1(), not(x), inc(x), add(x,y), 
div(x,y), or(x,y), exch_stack(m,n), 
push_prog(n), movstring(a,b,n), 
delete(a,n), find(x), define 
function(m,n), callfun(fn), 
jumpif(val,address), quote(), 
unquote(), 
boost_probability(n,val) …. 
 
Programs are integer sequences; 
data and code look the same; 
makes functional programming 
easy 



Towers of Hanoi: incremental solutions 
•  +1ms,   n=1:       (movdisk) 
•  1 day,   n=1,2:    (c4 c3 cpn c4 by2 c3 by2 exec) 
•  3 days, n=1,2,3: (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp) 
•  4 days: n=4, n=5, …, n=30:  by same double-recursive program 
•  Profits from 30 earlier context-free language tasks (1n2n): transfer learning 
•  93,994,568,009 prefixes tested 
•  345,450,362,522 instructions  
•  678,634,413,962 time steps 
•  longest single run: 33 billion steps (5% of total time)! Much deeper than 

recent memory-based “deep learners” … 
•  top stack size for restoring storage: < 20,000 



What the found Towers of Hanoi solver does: 
•  (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)     
•  Prefix increases P of double-recursive procedure: 

Hanoi(Source,Aux,Dest,n): IF n=0 exit;  ELSE BEGIN 
Hanoi(Source,Dest,Aux,n-1); move top disk from Aux to Dest; 
Hanoi(Aux,Source,Dest,n-1); END            

•  Prefix boosts instructions of previoulsy frozen program, which happens to 
be a previously learned solver of a context-free language (1n2n). This 
rewrites search procedure itself: Benefits of metalearning! 

•  Prefix probability 0.003; suffix probability 3*10-8; total probability 9*10-11 

•  Suffix probability without prefix execution: 4*10-14 

•  That is, Hanoi does profit from 1n2n experience and incremental learning 
(OOPS excels at algorithmic transfer learning): speedup factor 1000 



J.S.: IJCNN 1990, NIPS 1991: Reinforcement Learning      
with Recurrent Controller & Recurrent World Model 

Learning 
and 
planning 
with 
recurrent 
networks 



RNNAIssance   
2014-2015        

On Learning to 
Think: Algorithmic 

Information 
Theory for Novel 
Combinations of 

Reinforcement 
Learning RNN-

based Controllers 
(RNNAIs) and 

Recurrent Neural 
World Models 

http://arxiv.org/abs/1511.09249 




