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VISION
Automated active learning



Active learning

• When obtaining new data is expensive (e.g., requiring
human intervention, expensive simulation, or costly
experiments), we should think carefully about the data we
obtain.

• Active learning (also Bayesian optimization, active search,
etc.) considers how to obtain data to achieve your goals
efficiently.
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Application areas

Such problems are pervasive in the natural sciences and
engineering, in machine learning, etc.:

• drug/materials discovery,
• biology,
• astronomy,
• hyperparameter optimization, etc.
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Motivating question

• How is a nonexpert facing such problems to adopt the
tools machine learning is producing?

• Read the 7100-page NIPS 2017 proceedings?
• Get a human expert in machine learning?
• Pick something off the shelf?

• How can we remove the human from the loop? By
making an automated off-the-shelf option.
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Automated active learning proposal
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BAYESIAN OPTIMIZATION



Bayesian optimization

• Bayesian optimization is a powerful framework for
optimizing expensive-to-evaluate functions that has
proven successful in many domains.

• With an informative model of the objective function,
Bayesian optimization can be extremely sample efficient.

• Objectives can be
• nonconvex,
• observed without gradients,
• “black boxes.”
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Model of objective (posterior)

A Gaussian process model is typically chosen:

observations D samples
posterior mean 95% credible interval
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Derive an optimization policy via e.g. Bayesian decision theory

observations objective
posterior mean posterior 95% credible interval

acquisition function next observation location
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Many policies automatically trade off exploration/exploitation
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AUTOMATED MODEL
SEARCH



Automated active learning proposal

D

observed data

{Mi}

dynamic
bag of models

X

unlabeled data
oracle

train predict select
queries

incorporate newly observed data

Model search 14



Structured model spaces

We will automatically search a space of models to find a good
explanation of fixed dataset.

Here we focus on Gaussian process models, which are useful
for active learning and can express rich structure in data.
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Objective function

In the Bayesian formalism, given a dataset D, we measure the
quality of a model M using the (log) model evidence:

g(M;D) = log

∫
p(y | X, θ,M)p(θ | M) dθ.

Model search 17



Optimization problem

We may now frame model search as an optimization problem.
We seek

M∗ = argmax
M∈M

g(M;D).

Where M is some appropriate space of models, e.g.:
• compositional kernel grammar (Duvenaud, et al. ICML

2013)
• additive decompositions (Kandasamy, et al. ICML 2013)
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OBSTACLES
Why this is a hard problem



The objective is nonlinear and nonconvex

• The mapping from models to evidence is highly complex!
• Even seemingly “similar” models can offer vastly different

explanations of the data.
• . . . and this similarity depends on the geometry of the

data!
• Imagine a bunch of isolated points. . .
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The objective is expensive

Even estimating the model evidence is very expensive.
Easily O(1000|D|3)!
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The domain is discrete

Another problem is that the space of models is discrete;
therefore we can’t compute gradients of the objective.
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BAYESIAN OPTIMIZATION?
Why not?



A case for Bayesian optimization!

We have a
• nonlinear,
• gradient-free,
• expensive,
• optimization problem. . .

. . . Bayesian optimization!
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Overview of approach

We model the (log) model evidence function with a Gaussian
process in model space:

p
(
g(M;D)

)
= GP(g;µg, Kg).

Then use a posterior belief to derive an efficient policy trading
off exploration and exploitation in model space.

Bayesian Optimization 25



Evidence model

We need to construct an informative prior over the log model
evidence function:

p
(
g(M;D)

)
= GP(g;µg, Kg).

For the mean, we simply take a constant. . .
. . . what about the covariance?

Evidence model 26



The “kernel kernel”

We consider two kernels to be “similar” for a given dataset D
if they offer similar explanations for the latent function at the
observed locations.
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The “kernel kernel”

Given input locations X, we suggest two models M and M′

should be similar when the latent explanations

p(f | X,M) p(f | X,M′)

are similar; i.e., they have high overlap.
Many details omitted!
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“Kernel kernel:” Illustration
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Experimental setup

• We compare our method (Bayesian optimization for
model selection, BOMS) against the greedy search method
from Duvenaud, et al. ICML 2013.

• Everything is the same: estimate of evidence, model
space, etc.

• Budget of 50 model evidence computations.
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Results: Time series
AIRLINE
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Results: High-dimensional data
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Results: High-dimensional data
CONCRETE
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Notes

• Our procedure is able to rapidly and efficiently locate
promising models for fixed datasets compared to previous
approaches (Duvenaud, et al. ICML 2013).

• Much faster in more-complex model spaces due to
exploration/exploitation tradeoff.

• We offer some advice for automatically selecting
reasonable hyperparameter priors for given data.
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RETURNING TO THE VISION
Automating active learning



Looking forward

These results are promising, but the real promise of such
methods is in the inner loop of another active learning
procedure (e.g., Bayesian optimization)!
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Active learning/Bayesian optimization
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Initial study

We have completed an initial study of using our framework for
fully automated Bayesian optimization.
Compared proposed method with off-the-shelf model (SE) and
a fixed bag of models (BOM).
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BAYESIAN OPTIMIZATION
FOR AUTOMATING
BAYESIAN OPTIMIZATION
(talk about meta)



Results: Average gap (high = better)

test function SE BOM proposed
Ackley 0.79 0.37 1.00
Branin 0.86 0.96 0.99
drop-wave 0.37 0.43 0.49
McCormick 1.00 1.00 1.00
six-hump camel 0.70 0.85 0.87

Model-uncertainty aware methods (BOM and proposed)
typically outperform off-the-shelf methods, with the proposed
method performing the best on all functions.
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THANK YOU!
Questions?



But random search. . .

• With an informative model of the objective function,
Bayesian optimization can be extremely sample efficient.

• With an weakly informative model of the objective
function, Bayesian optimization can devolve to a slightly
smarter random search.

• For example, an off-the-shelf kernel in high dimensions is
going to face the curse of dimensionality.

• But this is just an argument for finding better models!
(Low-dimensional structure, additive structure, etc.),
which can give massive (exponential) speedups.
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